Stereospecific Protonative Deconjugation of Alkyl3-Trimethylstannylalk-2-enoates

Edward Piers* and Ashvinikumar V. Gavai

Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada V6T 1 Y6

Treatment of the P-trimethylstannyl @-unsaturated esters **(3)-(8)** with lithium di-isopropylamide in tetrahydrofuran (THF) **[(3)-(5)]** or **THF-hexamethylphosphoramide "6)-(8)],** followed, in each case, by transfer of the resultant solution to a cold (-98 "C) solution of acetic acid in ether, provides *exclusively* the alkyl **3-trimethylstannylalk-3** enoates (9)-(14), respectively.

In connection with a research programme involving the preparation of bifunctional conjunctive reagents and their use in organic synthesis,' we have investigated the protonative deconjugation of geometrically isomeric β -trimethylstannyl α , β -unsaturated esters. We report herein that these transformations are *highly stereospecific.* Thus, deconjugation of

 $R^1CH_2C \equiv CCO_2R^2$

(1)
$$
R^1 = CH_2CH_2OSiMe_2Bt^2
$$
, $R^2 = Et$
(2) $R^1 = Pr^c$, $R^2 = Me$

the (E) -esters (3) — (5) affords *exclusively* the alkyl (Z) -3**trimethylstannylalk-3-enoates (9)-(11),** respectively, while the (Z) -esters (6) — (8) give only the products (12) — (14) , respectively.

Successive treatment of a tetrahydrofuran (THF) solution of **5-t-butyldimethylsiloxypent-1-ynet** with methyl-lithium and ethyl chloroformate provided the ester **(1)** (89%). On the other hand, when a solution of the dianion of propynoic acid (formed by treatment of the parent acid with *2* equiv. of BunLi) in THF-HMPA (hexamethylphosphoramide) was allowed to react with cyclopropylmethyl bromide (1.05 equiv., room temperature, 24 h) and subsequently with methyl iodide **(4** equiv., room temperature, 24 h), methyl 4-cyclopropylbut-2-ynoate **(2)** was produced directly (53%). Reaction of the two α , β -acetylenic esters **(1)** and **(2)** with lithium (phenylthio)(trimethylstannyl)cuprate2a under appropriate reaction conditions^{2b} provided the required β -trimethylstannyl α, β unsaturated esters (4) , (5) , (7) , and (8) .

(11)

solution (recooled to -78 °C) was transferred (cannula) to a

cold $(-98$ °C) solution of acetic acid in ether, ethyl (Z)-3-

trimethylstannylpent-3-enoate (9) was produced exclusively
 $(82\% \text{ yield of purified, distilled product})$. In simila When ethyl (E) -3-trimethylstannylpent-2-enoate $(3)^{2b}$ was allowed to react with lithium di-isopropylamide (LDA) (2.3 equiv.) in THF (-78 °C, 0.5 h; 0 °C, 1 h) and the resulting solution (recooled to -78 °C) was transferred (cannula) to a cold $(-98 °C)$ solution of acetic acid in ether, ethyl (Z) -3**trimethylstannylpent-3-enoate (9)** was produced exclusively (82% yield of purified, distilled product). In similar fashion, the (E)-esters **(4)** and **(5)** were converted cleanly and efficiently into the β , y-unsaturated esters (10) (83%) and (11) (79%). Careful analysis of the crude products of these reactions showed the complete absence of the geometrically isomeric esters (12)—(14).

 \dagger All compounds reported herein exhibit spectra consistent with assigned structures. New compounds were spectrally characterized and gave satisfactory molecular mass determinations (high resolution mass spectometry).

Protonative deconjugation of the (Z) -esters (6) — (8) also occurred with complete stereoselectivity, producing exclusively the alkyl 3-trimethylstannylalk-3-enoates (12)–(14), respectively (isolated yields 77-87%). The procedure employed for these reactions was very similar to that used for the (E) -esters (3) - (5) , except that deprotonation was done with 1.5 equiv. of LDA in THF containing 1.5 equiv. of HMPA. Again, none of the geometrically isomeric deconjugated esters (9) — (11) could be detected in the crude products.^{$‡$}

Recently, it was shown,⁴ *inter alia*, that protonative deconjungation of ethyl (Z)-alk-2-enoates **(15)** produces, highly stereoselectively, the (E)-esters **(19).** In contrast, however, it was found that the stereoselectivity associated with deconjugation of (E) -alk-2-enoates $[e.g. (16)$ - $(18)]$ decreases markedly as the size of the R group increases. For example, although substrate **(16)** produces exclusively the ester **(20),** deconjugation of **(17)** and **(18)** provides, in each case, a mixture of the possible isomeric products $[(17) \rightarrow (21)]$ $(81\%) + (19)$ $(R = \text{Pr}^n)$ (13%) ; $(18) \rightarrow (22)$ $(62\%) + (19)$ $(R = Prⁱ)$ (35%)].^{4b} Thus, although our results on the deconjugation of esters (3)–(5) correlate well with those obtained earlier4 with the structurally simpler substrates **(15),** it is clear that the stereoselectivity associated with the deconjugation of alkyl **(Z)-3-trimethylstannylalk-2-enoates** [cf. **(6)-(8)] is** more consistent and, in most cases, much higher than that connected with deconjugation of the corresponding esters $[cf. (16) - (18)]$ lacking the Me₃Sn group. This latter difference may be rationalized as follows. It can be (reasonably) assumed that deprotonation of **(6)-(8)** and **(16)-(18)** occurs *via* one or both of two possible transition states, one of which [represented by (A)] would eventually lead to the products **(12)-(14)** and **(20)-(22),** while the other [represented by (B)] would ultimately provide the corresponding geometric isomers. When R is small and $Y = H[e, g]$. (16) , (\overline{A}) is evidently of lower energy than (B) .^{4b} However, as R becomes relatively more bulky *[e.g.* **(17), (IS)],** the non-bonded steric strain between R and H^* [see (A)] becomes increasingly important and deprotonation *via* transition state **(B) (Y** = H) competes significantly with deprotonation *via* (A) $(Y = H)$. In contrast, when $Y = SnMe₃$, the steric strain between R and H* in **(A)** is offset by non-bonded repulsion between R and Y $(= SnMe₃)$ in (B). Thus, apparently, even when R is relatively bulky, deprotonation occurs exclusively by way of transition state (A) $(Y = \text{SnMe}_3)$ and substrates **(6)–(8)** are converted cleanly into the β , y-unsaturated esters **(12)-(14),** respectively.

Conversion of the esters **(9)** and **(12)** into the chlorides **(23)** and **(26),** respectively, can be accomplished efficiently *via* standard reactions. Transmetallation (MeLi, THF, -78 °C) of (23) affords (24) , which may be transformed $(MgBr₂)$ into the Grignard reagent **(25).** Both **(24)** and **(25)** serve effectively as conjunctive reagents which are synthetically equivalent to the (E) -d³,a⁵-pent-2-ene synthon (C). For example, copper(1)catalysed conjugate addition of **(25)** to enones and subsequent intramolecular alkylation of the resultant products form the basis of a new (Z) -ethylidenecyclopentane annulation method.5 Interestingly, although transmetallation of **(26)** also occurs smoothly, the resultant lithio reagent **(27)** is very unstable and, even at low temperatures $(-78 \degree C)$, it selfannihilates rapidly to give ethylidenecyclopropane **(28)** *.5*

We gratefully acknowledge the Natural Sciences and Engineering Research Council of Canada, Merck and Co., Inc., and Merck Frosst Canada, Inc. for financial support, and the University of British Columbia for a University Graduate Fellowship to A. V. G.

Received, 25th March 1985; Corn. 396

References

- E. Piers and **V.** Karunaratne, (a) *J. Org. Chem.,* **1983,48,1774;** (b) *J. Chem. SOC., Chem. Commun.,* **1983, 935;** (c) *Can. J. Chern.,* **1984, 62, 629;** (d) **J.** *Chem. SOC., Chem. Commun.,* **1984,959;** (e) E. Piers and H. L. **A.** Tse, *Tetrahedron Lett.,* **1984,25,3155;** (f) E. Piers and **B.** W. **A.** Yeung, J. *Org. Chern.,* **1984, 49, 4567.**
- **E.** Piers and H. E. Morton, (a) *J. Chem. SOC., Chem. Comrnun.,* **1978, 1033;** (b) **J.** *Org. Chem.,* **1980, 45, 4263.**
- **A. J.** Leusink, **H. A.** Budding, and J. **W.** Marsman, J. *Organornet. Chem.,* **1967, 9,285.**
- (a) E.-P. Krebs, *Helv. Chim. Acta,* **1981,64,1023;** (b) **A. S.** Kende and **B.** H. Toder, J. *Org. Chem.,* **1982,47,163.**
- **E.** Piers and **A.** V. Gavai, unpublished work.